高速嵌入式视频系统中SDRAM时序控制分析

在高速数字视频系统应用中,使用大容量存储器实现数据缓存是一个必不可少的环节。SDRAM就是经常用到的一种存储器。

    在高速数字视频系统应用中,使用大容量存储器实现数据缓存是一个必不可少的环节。SDRAM就是经常用到的一种存储器。

  但是,在主芯片与SDRAM之间产生的时序抖动问题阻碍了产品的大规模生产。在数字电视接收机的生产实际应用中,不同厂家的PCB板布线、PCB材料和时钟频率的不同,及SDRAM型号和器件一致性不同等原因,都会带来解码主芯片与SDRAM间访问时序的抖动问题。

  本文利用C-NOVA公司数字电视MPEG-2解码芯片AVIA9700内置的SDRAM控制器所提供的时序补偿机制,设计了一个方便使用的内存时序测试软件工具,利用这个工具,开发测试人员可在以AVIA9700为解码器的数字电视接收机设计和生产中进行快速诊断,并解决SDRAM的时序问题。

  数字电视系统

  SDRAM时序控制

  AVIA9700内集成了一个SDRAM控制器,该控制器提供一套完整的SDRAM接口。AVIA9700与SDRAM接口中的控制线、地址线和数据线都同步在MCLK时钟上。图1是用两片16位SDRAM组合形成32位数据线的典型连接示意图。



高速嵌入式视频系统中SDRAM时序控制分析
图1 SDRAM与AVIA9700典型链接示意图


  SDRAM控制线

  正确读写时序条件

  AVIA9700解码芯片访问SDRAM的时序如图2所示。



高速嵌入式视频系统中SDRAM时序控制分析
图2 AVIA9700访问SDRAM时序示意图


  要正确访问SDRAM,建立时间和保持时间很关键。建立时间在触发器采样之前,在这段时间,数据必须保持有效的时间,否则会产生setup violation;保持时间在解发器开始采样之后,数据必须保持有效的时间,否则会产生hold violation。因此,要正确读写SDRAM的时序条件,需要满足以下两个公式:

  SDRAM_Setup_time_min < T_cycle-control_signal_valid_max-control_signal_Delay_max+ clock_delay_min (1)

  SDRAM_Hold_time_min < control_signal_valid_min + control_signal_delay_min- clock_delay_m_ax (2)

  这里,T_cycle 为SDRAM时钟周期,Control signal valid为控制信号从时钟上升沿到输出有效时间,delay为布线所引起的延时。

  对于低频设计,线互连和板层的影响很小,可以不考虑。当频率超过50MHz或信号上升时间Tr小于6倍传输线延时时,互连关系必须以传输线理论纳入考虑之中,而在评定系统性能时也必须考虑PCB板材料的电参数。由于AVIA9700输出时钟信号MCLK工作在108MHz~148.5MHz之间,所以设计时必须考虑布线延时引起的SDRAM时序问题。

  AVIA9700 SDRAM

  时序控制机制

  为了补偿布线延时,满足公式(1)和公式(2)的要求,AVIA9700的内置SDRAM控制器提供了两个延时补偿参数: SDRAM_CLK_IN和SDRAM_CLK_OUT。这两个参数都是8位的整数,可以提供不同的时钟延时组合,解决各种复杂数字电视接收机系统中的SDRAM时序问题。

  通过嵌入式应用软件,开发人员可以调整SDRAM_CLK_IN的参数来控制读入数据的时钟延时。同样,对SDRAM_CLK_OUT的设置也可以改变输出时钟的延时。通过设置SDRAM_CLK_OUT (OutTapSel=X)改变输出的MCLK时钟相位,补偿各种不同的布线延时,可以解决高速数字电视系统的SDRAM时序问题。

  在实际应用中,由于不同整机厂会采用不同厂家的SDRAM,PCB布线也会因为机器结构原因发生较大变化,时钟工作频率和选用器材的不一致性等,都会引起公式(1)、(2)中的参数发生变化。这些因素的组合,往往使布线延时问题变得复杂。

    AVIA9700 SDRAM

  时序诊断软件及测试结果

  为了方便开发人员快速解决问题,本文利用AVIA9700内置SDRAM控制器提供的时钟延时补偿机制,设计了一个诊断工具。

  基于AVIA9700数字电视接收机,由于PCB、元器件、系统频率都已经定型,影响布线延时的电气特性已经固化。通过改变SDRAM_CLK_IN和SDRAM_CLK_OUT组合,设计人员可以测试不同组合下的SDRAM访问错误率,根据错误率统计数据制成统计图,如图3所示。图中纵坐标为SDRAM_CLK_IN,由于寄存器是8位,因此选取坐标取值范围在0~255之间(28);横坐标为SDRAM_CLK_OUT,取值范围也在0~255之间。对该范围内的某一点所对应的寄存器设置,诊断软件都要自动重复10000次读写操作。设计人员可以利用最后生成的图形,快速准确地选定SDRAM_CLK_IN和SDRAM_CLK _OUT的值,并将其固化在最终生产版本的软件中。



高速嵌入式视频系统中SDRAM时序控制分析
图3 SDRAM时序测试统计图


  这里,补偿参数的选择原则是,组合值需要在测试图中无错区域的中心,且距离边界大于25。

  结语

  通过实验发现,在高速数字系统设计中,通过SDRAM控制器来补偿布线延时可以很好地解决SDRAM时序问题。

  参考文献

  1. Howard Honson, Martin Graham. 高速数字设计[ M ] . 电子工业出版社. 2004

  2. AVIA9700 datasheet C-NOVA, Inc. 2004

  3. AVIA9700 programming guide C-Nova, Inc. 2004
 

高速嵌入式视频系统中SDRAM时序控制分析

该文观点仅代表作者,本站仅提供信息存储空间服务,转载请注明出处。若需了解详细的安防行业方案,或有其它建议反馈,欢迎联系我们

(0)
小安小安

相关推荐

  • 可靠且灵活高性能安全级边缘存储正受欢迎

    人工智能、物联网和 5G 的进步也意味着视频监控收集的数据量呈指数级增长。随着超高清摄像头和人工智能的使用,视频监控系统正在收集和存储越来越多的数据。因此,需要价格合理、可靠且灵活的高性能安全级边缘存储解决方案。

    2025年12月18日
  • 云存储引领监控走新时代

    需求推动创新,从2013年起云存储技术陆续出现在视频监控领域,并迅速在行业中取得突破,从厂区、楼宇到金融银行、从交通系统到大型平安城市的视频监控系统都陆续出现云存储部署的身影。

    2025年12月13日
  • 智能视频监控从技术驱动向市场驱动转化

    虽然现在智能视频监控系统由于受使用场合、使用方式以及价格等因素的制约,还没有大规模应用,但是国内外很多厂商都很看好这个市场的发展。 智能视频监控系统中的智能视频分析可以分为嵌入式智能分析和纯软件智能视频分析。嵌入式智能视频分析产品一般对视频分析技术与前端设备性能有较大的依赖,其从产品实现上主要应用在前端。

    2025年12月3日
  • 天地伟业:网络视频服务器,未来不是梦

    随着近两年平安城市和电子监考等行业类监控项目建设的火热进行,借助国内数字视频监控领域各主要厂商的强力推动,无论是单独由网络摄像机、网络球组成的解决方案,还是由模拟摄像机加网络视频服务器组成的解决方案,或者是两者混合组成的解决方案,网络视频监控都被证明是一种极具吸引力的监控系统建设模式,也越来越多的为广大工程商朋友所熟知,未来的安全与监控领域,网络化将是大势所趋。

    2025年11月29日
  • 中维综合安防系统&私有云安防平台解决方案上线

    中维项目再放大招,综合安防系统&私有云安防两大平台解决方案重磅上线。

    2025年11月26日 资讯
  • 华为发布首个全面云化 全网智能的视频云方案

    在城市数字化转型过程中,视频成为公共安全管理和城市治理的重要工具,在中国超过60%的案件侦破已经使用到视频。但是,当前社会视频系统和大量治安视频系统独立建设,视频&数据共享困难。随着跨区域型犯罪增多,视频分析难度加大,跨区案件视频的获取和分析都耗费大量时间、人力、物力成本,各业务部门都在呼唤更高效、更开放的视频实际应用能力。

    2025年11月26日