深度学习
-
聚焦人工智能产业跃升发展 打赢关键核心技术攻坚战
业界普遍认为,人工智能迄今经历了两代。第一代人工智能是知识驱动型的,总体进展有限;第二代人工智能是数据驱动型的,也就是目前炙手可热的大数据、深度学习等,已经成为不少科技强国竞相争夺的战略技术高地。
-
机器阅读理解:人工智能技术的重要分支之一
机器阅读理解(英文Machine Reading Comprehension,简称MRC)是近期自然语言处理领域的研究热点之一,更是人工智能在处理和理解人类语言进程中的一个长期目标。得益于深度学习技术和大规模标注数据集的发展,用端到端的神经网络来解决阅读理解任务取得了长足的进步。
-
智能视频分析将如何改变零售产业相关商店
零售格局正在发生巨大的变化。实体零售商面临来自在线零售选择的激烈竞争,而且这似乎是不公平的。
-
涵盖计算机视觉等领域腾讯优图发布《2021十大人工智能趋势》
趋势报告显示,越来越多的人工智能企业发现数据的标注开始成为抬高交付成本、制约效果提升的主要因素之一,不断强化无监督/弱监督学习由量变到质变,将助推企业从前期的迅速扩张到稳定期高效化运作的新阶段;AI与数字内容产业的深度耦合,也将有希望为行业释放更大的科技势能,构筑数字内容生成新范式。
-
论人工智能是如何将芯片行业去商品化的
新的创业公司纷纷入场,挑战英特尔、AMD、Nvidia、微软、高通,谷歌和IBM等老牌企业。像Graphcore、Nervana、Cerebras、Groq、Vathys、Cambricon、SambaNova Systems和Wave Computing这样的新兴公司正在成为为深度学习的未来铺平道路的新星。虽然这些初创公司肯定资金充足,但它们都处于早期阶段,我们还猜不出谁会成为赢家,老牌企业又会做到什么。
-
研究人员开发了一种新方法,用于改善人工智能的计算机视觉
来自 UTSA、中佛罗里达大学 (UCF)、空军研究实验室 (AFRL) 和 SRI International 的研究人员开发了一种新方法,可以改善人工智能学习观察的方式。
-
人工智能“寒冬”只是假象:技术发展不会一帆风顺
自1956年AI“诞生”以来,其发展经历了两次“寒冬”,分别处于上世纪的70年代和80年代。虽然技术上的缺陷或障碍,似乎是直接导致这两次“寒冬”出现的原因,但更为深层的原因恐怕还是人类自身的认知所引发的。
-
AI芯片的功能分类
从功能来看,AI芯片可以分为Training(训练)和Inference(推理)两个环节。Inference环节指利用训练好的模型,使用新的数据去"推理"出各种结论,如视频监控设备通过后台的深度神经网络模型,判断一张抓拍到的人脸是否属于黑名单。虽然Inference的计算量相比Training少很多,但仍然涉及大量的矩阵运算。在推理环节,GPU、FPGA和ASIC都有很多应用价值。
-
AI芯片的应用场景分类
在深度学习的Training阶段,由于对数据量及运算量需求巨大,单一处理器几乎不可能独立完成一个模型的训练过程,因此,Training环节目前只能在云端实现,在设备端做Training目前还不是很明确的需求。
-
AI芯片技术发展瓶颈
《人工智能芯片技术白皮书(2018)》第四章分析在CMOS工艺特征尺寸逐渐逼近极限的大背景下,结合AI芯片面临的架构挑战,AI芯片的技术趋势。一方面,研究具有生物系统优点而规避速度慢等缺点的新材料和新器件,采用新的计算架构和计算范式;另一方面,将芯片集成从二维平面向三维空间拓展,采用更为先进的集成手段和集成工艺,将是AI芯片技术在很长一段时期内的两条重要的路径。
-
算法加持AI芯片产业密集落地,AI社会未来已来?
对整个AI芯片产业而言,在算法的加持下,2018年将是密集爆发的一年,将以指数级速度向前发展,迅速渗透消费电子、家居、安防、智能驾驶、云计算以及工业、制造、金融、医疗、教育等各个领域。所有搭载芯片的电子设备都将提升AI计算能力,打造一个货真价实的AI社会。未来已来,我们或将进入一个AI新时代。